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In If, 2] it has been shown that the laminar boundary-layer problems which are self- 
similar in steady flow are also self-similar in unsteady flow if the flow is impulsively 
started or accelerated with a step increase. A conaiusion has been reached on thedominating 
effect of the body shape when compared to the acceleration of the body on the boundary-layer 
velocity and temperature profiles.. In the present paper, we consider a number of non-self- 
similar unsteady boundary-layer problems. A change in variables is suggested for computa- 
tions in order to increase the time step size by almost an order of magnitude. This con- 
siderably reduces the computational time. The basic relation is "encompassed" by the self- 
similar part of the problem. An analysis is made of the effect of various parameters 
(acceleration, pressure gradient, fluid composition, suction, dependence of viscosity on 
velocity) on skin-friction and heat flux to the wall. 

I. Model for Local Similarity of Unsteady Boundary Layer. It is assumed that the 
external flow velocity can be expressed in the form Ue = ~xm(x)t ~. Here and in what follows 
~ a are constants, x is the strea~ise coordinate, y is thetransversecoordinate, the indexe 
refers to quantities in the external flow, m(x) is a given function, u is the streamwise velo- 
city component, and v is the normal velocity component. 

New coordinates are introduced for solving the problem: 

= x/t~(x),  TI = Y/t~/2' ~ = t,  u = ~)(~, ~1, z)axm(X)t% (1) 

whe re 

p = (a  + t ) / (1  - -  re(x)); v = V(~,  ~l, ~)lt~(~); k ( x )  = t l 2 .  

It is known [3] that at the beginning of the motion vorticity of infinite strength appears in 
the neighborhood of the wall. Hence, computation at small values of time is carried out 
separately. The equation given in [4], for example, is solved: 

dg__~ q__~.~i d~ . . . .  a~ 0, ~(0) = i, 9(00)---- 0, ~ i 9. (2) 
dB ~ 

Equation (2) is solved by the shooting technique. In terms of the variables (1) the system 
of boundary-layer equations hasthe form (the bar is dropped, ~ = ~(~, ~, ~)), 

[ o. 0*  o *  + (D a~ '~(~) (1 - -  x In  t p '  (x ) )  - s  + ( 3 )  

] o. 
+ q~ag '~(~-1 (m ~ (x) x In x -1- m (x))  -t- a ~ : ' ~ ) ' t V  ( t  - -  x In tk '  (x)) ~ = 

o ~  o~  
--- ~ -t- a~ 'n'~l-x (m' (x) x In x + m (x)) -i- ~ - -  "c-~-; 

qb (m' (x) x in  x -k rn (x)) + ~ (1 - -  x In tp' (x)) ~ -t- ~ = O; (D (0, ~) = 

=0,~>0~T>0; V(O,~)=  w; ~ ( o o , ~ ) =  t; r  t; w =  const 

In order to solve system (3), an implicit difference scheme in ~, the shooting method 
with iteration in ~, and explicit difference scheme in T are used. The quantities (1 -- x In 
tp'(x)) and (m'(x)x In x + m(x)) are easily computed through ~, n, T. 

An example of the computation of the nondimensional velocity profile is shown in Fig. ! 
for m(x) = ~ + yx, ~ = 0.5, y = --0. I, +0.I. The curves for y =--0.1 and y = 0.1 coincide. 
Similarity solutions differ by the second sign from the solution to the complete system of 
equations. Curves I, 2 correspond to ~ = 0.05, 3.1. 
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The results of these computation s make it possible to conclude about the usefulness of 
approximating realistic unsteady flows of the given type by locally similar flows. 

2. Unsteady Compressible Boundary Layer for Various Speeds at the Outer Boundary. 
Assume Ue = ctex m, Ue = (I + ct)bax m, m = const. Consider the situation when the fluid flow 
outside the boundary layer is adiabatic, the fluid is ideal and perfect. For the velocity 
distribution Ue = ctax m the pressure at the outer boundary can be approximately computed 
with Cauchy--Lagrange equation 

P ~ - -  Pe [~-~-T  t x t - -  t2ax2m + Po ( t)  = P l  + Po ( t)  = P l  +const,; (4) 

where po is the free-stream pressure. Equation (4) is obtained by assuring that 0e = const 
and T e = const. If the temperature at the outer boundary is high, e.g., Te = 2500~ po = 
105 N/m 2, e = 500, Pe = 0.15 kg/m 3, then for 0<~<I.5, m = 0.5, 0.5"1024 IPll < 0-3"I0s 
N/m 2, i.e., po~pl and the assumption is valid. The given model is discussed because we do 
not have the necessary information on the distribution of parameters at the outer boundary 
for unsteady flow. For compressible fluid, a binary mixture and air were considered. Visco- 
sity p and conductivity 2 were computed using an equation given in [5]. The algorithm for 
the solution of the problem was the same as in Sec. i. Since m(x) = const, the solution 
rapidly shifts along ~ to the asymptote (~ = 5). 

Figure 2 shows nondimensional velocity profiles on the plate for a mixture of O, 02 
with concentrations of C02 = 0.7 and C O = 0.3 (solid lines) and H2, 02 with concentration of 

C02 = 0.7 and CH2 = 0.3 (crosses) at Ue = 0.2"10 s cm/sec, Te = 1500~ Tw = 500~ ~ = 0.025; 

6.4 (curves I, 2, respectively). Computed results showed that the relation between mass and 
heat transfer is the same as in the steady flow. 

Figure 3 illustrates the variation in velocity profile on a flat plate in air as a func- 
tion of suction. Here c = 500, Te ~ 2400~ Tw = 500~ v w = ~t I/2, a = I, 0.5; t = 0.5, I; 
2 sec, ~ = 0, 2.5; 10, 15 (all curves coincide), E = 0.00625. 5.5 (curves I, 2, respectively). 
The dashed line corresponds to $ = 5.5, ~ = 50, the dot-dash line is for T w= 70~ $= 5.5. It 
is seen that the effect of vertical velocity component is small and for appreciable reduc- 
tions in skin-friction, a large mass flow of fluid through the wall is required. For 0 < m < 
~, the behavior of the profiles is similar. Similar computation was made for U e= (i + ct)bax m. 
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In both cases, the introduction of new variables reduces computation time. 

3. Unsteady Boundary Layer with External Flow Velocity U e = ctax m for Non-Newtonian 
Fluid. The inadequacy of theoretical and experimental data on tlie effect of the nonlinear 
characteristic of viscosity on the velocity and temperature boundary layer profiles is indi- 
cated in [6]. We studied the case when viscosity D = c~(~u/~y) kl, conductivity ~ = c2(T/To)k2~ 
c~, k~, c2, k2, and To are given constants. In the case of incompressible flow started in 
pulses or with a sudden acceleration, the problem is self-similar and the number of vaci- 
ables drops from three to two. Computation is carried out as in [i, 2]. 

With increase in k~, nondimensional velocity profiles become more flat when compared to 
the case of constant viscosity. This is illustrated in Fig. 4. Here the solid line refers 
to ~ = eonst, c = 500, m = 0.5, a = 0.5, ~ = 0.02; 3.6 (curves ], 2 respectively), k~ = 0.5 
(dashed line), k~ = 0.7 (dash--dot line). For compressible fluid it is not possible to reduce 
the order of the equation. However,'after transforming the variables, it is possible to 
compute with large step sizes in "r. Viscosity is the dominating factor that determines the 
temperature profile in the non-Newtonian fluid with pulsed starting of the motion of thebody~ 
For the usual fluids, the temperature profile is aIways determined by heat conductivity. 

The above computations showed the effectiveness of using the suggested coordinate sys- 
tem and made it possible to study the effect of individual parameters on the characteristics 
of the unsteady boundary isyer. 
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